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We discuss a theory recently proposed by Virga and co-workers for the analysis of the local elastic stability
of nematic liquid crystals �R. Rosso, E. G. Virga, and S. Kralj, Phys. Rev. E. 70, 011710 �2004��. The periodic
instability in a nematic sample induced by the saddle-splay elastic constant or by the coupling of an external
field with the flexoelectric polarization is reconsidered. We show that in the case in which the two surfaces
limiting the sample are characterized by the same easy angle the analysis previously proposed by us coincides
with the one proposed by Virga et al.
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In a series of papers �1–6� we analyzed the stability of a
nondeformed director pattern, n�r�=N, with respect to a pe-
riodic one. In our analysis the source of the periodic insta-
bility is the saddle-splay elastic constant or the coupling of
an external field with the flexoelectric polarization. The the-
oretical analysis is based on the assumption that the two
surfaces were characterized by the same easy angle. In this
framework the nondeformed state of the director, where the
nematic director is position independent, is a solution of the
bulk differential equations, and satisfies the relevant bound-
ary conditions, since it is along the easy axis. The analysis
proposed in �2–6� is based on the following procedure. The
nondeformed state is n�r�=N, and the relevant total energy
for the sample under consideration is F�N�. We consider also
a distorted director field n�r�=N+p�r�, where p�r�=� u�r�,
and � is a small quantity that is considered as an expansion
parameter in a perturbational analysis. Then, we expand the
total energy of the sample up to the second order in �. Since
the modulus of the nematic director is such that n ·n=1 it
follows that n ·n=N ·N=1, and hence, at the first order in �,
N ·p=0. When N→n=N+p we get F�n�=F�N�+�F�u�,
where �F�u� is of the second order in � �2–6�. By minimiz-
ing F�n�, i.e., �F�u� with respect to u�r�, we obtain the new
bulk differential equations and boundary conditions of the
problem. The analysis of �F�u��0 for the u�r� extremizing
�F�u� determines the threshold of the instability. This proce-
dure has been recently reconsidered by Virga et al. �7� for the
following reason. Since �F�u� is of the second order in � it is
not enough to put p�r�=� u�r�, but it is necessary to consider
p�r�=� u�r�+�2v�r�, because from the condition n ·n=1 it
follows that, at the second order in �, 2�N ·u+�2�2N ·v
+u ·u�=0. Whence, N ·u=0, and N ·v=−�1/2�u ·u, at the
first and second order in �, respectively. From this observa-
tion it follows that N ·p=−�1/2��2u ·u. As shown below, the
contribution to the total energy connected to N ·p has to be
taken into account if the total energy is expanded up to the
second order in �. However, we will show that in the case in
which the nematic sample is characterized by the same easy
angle on the two surfaces, this contribution vanishes identi-
cally.

We indicate by N the nondistorted nematic field, and by
n�r�=N+p�r� the distorted one. The total energy of the

sample, of volume V limited by the surface S, is given by

F�n�r�� =� � �
V

f�ni,ni,j�dV +� �
S

g�ni�dS , �1�

where ni,j =�ni /�xj are the spatial derivatives of the compo-
nents of the nematic director. In Eq. �1� f�ni ,ni,j� is the bulk
energy density, containing the elastic terms and the contribu-
tion describing the interaction of the nematic material with
the external fields �8�, and g�ni� the anisotropic part of the
surface tension �9�. The actual nematic director field n�r� is
the one minimizing F�n�r��. Standard calculations give for
the bulk differential equations

� f

�ni
− � j

� f

�ni,j
= �vni, �2�

where � j =� /�xj, and for the boundary conditions

� f

�ni,j
�i +

�g

�ni
= �sni, �3�

where �i are the Cartesian components of the outer geometri-
cal normal to the bounding surface S. In Eqs. �2� and �3� �v
and �s are the Lagrange multipliers connected with the con-
straint n ·n=1 in all the volume V limited by S, and Ein-
stein’s convention has been used on the repeated subscript.

We evaluate now the variation of F when N→n=N+p.
For this transformation the bulk energy density becomes
f�ni ,ni,j�= f�Ni+ pi , pi,j�. By expanding f in power series of pi

and pi,j up to the second order we get f�ni ,ni,j�= f�Ni ,0�
+�1f +�2f , where

�1f = � � f

�n�
�

N
p� + � � f

�n�,�
�

N
p�,�, �4�

and

�2f =
1

2
� �2f

�n� � n�

p�p� + 2
�2f

�n� � n�,	
p�p�,	

+
�2f

�n�,� � n�,	
p�,�p�,		

N
. �5�

By operating in a similar manner with g�ni� we get
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g�ni� = g�Ni� + � �g

�n�
�

N
p� +

1

2
� �2g

�n� � n�
�

N
p�p�. �6�

From Eq. �2� we have

� � f

�n�
�

N
= ���

� f

�n�,�
+ �vn��

N
. �7�

Consequently, �1f given by Eq. �4� can be rewritten as

�1f = ��� � f

�n�,�
p�� + �vN�p�. �8�

Hence, when N→n=N+p, F�N�→F�n�=F�N+p�=F�N�
+�F, where �F=�1F+�2F, with

�1F =� �
S
���

� f

�n�,�
+

�g

�n�
�

N
p�dS , �9�

and

�2F =� � �
V

��2f + �vN�p��dV

+
1

2
� �

S
� �2g

�n� � n�
�

N
p�p�dS . �10�

By taking into account Eq. �3� �1F can be rewritten as

�1F =� �
S

�sN�p�dS . �11�

It follows that, explicitly, �F is given by

�F =� � �
V

�vN�p�dV +� �
S

�sN�p�dS

+
1

2
� � �

V
� �2f

�n� � n�

p�p� + 2
�2f

�n� � n�,	
p�p�,	

+
�2f

�n�,� � n�,	
p�,�p�,	�

N
dV

+
1

2
� �

S
� �2g

�n� � n�
�

N
p�p�dS . �12�

In our previous analysis we put n=N+�u. From the con-
dition n ·n=N ·N=1 we get N ·u=0. Furthermore, since p
=�u from �12� we have

�BF =
1

2�� � �
V
� �2f

�n� � n�

u�u� + 2
�2f

�n� � n�,	
u�u�,	

+
�2f

�n�,� � n�,	
u�,�u�,	�

N
dV	

+ �� �
S
� �2g

�n� � n�
�

N
u�u�dS	�2, �13�

quadratic in �.
As underlined by Virga et al. �7� the correct procedure

implies to consider also the second-order variation of the
director field, i.e., n=N+p, with p=�u+�2v. In this case
from the condition n ·n=N ·N=1 it follows that N ·u=0, and
N ·v=−�1/2�u ·u, at the first and second order in �, respec-
tively. Consequently N ·p=�2N ·v=−�1/2��2u ·u, and from
�12� �F is, according to Virga et al. �7�,

�VF = −
1

2�� � �
V

�vu�u�dV +� �
S

�su�u�dS	�2 + �BF .

�14�

Equation �14� shows that the assumption v=0 gives a differ-
ent result if �F is expanded up to the second order in �.

In our previous papers �2–6� we have investigated the
stability of the undistorted configuration in the presence of
the saddle-splay elastic constant or of an external field
coupled with the flexoelectric polarization. In our theoretical
analyses the two surfaces have the same easy angle. Hence,
N is a minimizer of the anisotropic part of the surface ten-
sions on both surfaces. Consequently, N was such that �v
=�s=0. In this case, as discussed above, �VF=�BF. It fol-
lows that the results reported in �2,3� are correct, provided
that �BF is minimized over all admissible fields u. Of course,
in order to analyze the stability of the periodic deformation
in a hybrid nematic cell, where �s�0, it is necessary to use
the procedure proposed by Virga et al. �7�.

The authors are very thankful to R. Rosso and E. G. Virga
for useful discussions.
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